
LA-UR-18-20135
Approved for public release; distribution is unlimited.

Title: Bringing Best Practices to a Long-Lived Production Code

Author(s): Ferenbaugh, Charles Roger

Intended for: Webinar for Exascale Computing Project, 2018-01-17

Issued: 2018-01-31 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Bringing Best Practices to a
Long-Lived Production Code

Charles R. Ferenbaugh

HPC Best Practices Webinar
January 17, 2018

Los Alamos National Laboratory LA-UR-18-20135

Disclaimer

This talk comes in two parts, a general philosophy part and a case
study part
• The general part applies to many (all?) long-running scientific

software projects
• The solutions from our case study may or may not apply to your

project; they’re meant as examples

Los Alamos National Laboratory 2018-01-17 | 2

Outline

• Problems faced by long-lived scientific codes
• LANL’s experience in the xRage code project
• Recommendations for other projects

Los Alamos National Laboratory 2018-01-17 | 3

Long-lived scientific codes

• Discussions of best software practices sometimes assume
(implicitly?) that you’re starting a new project and a new code

• But what if you have an ongoing, years- or decades-old project?
– Large, pre-existing code base
– Existing code team with established habits
– Significant user base, already using the code regularly

• Often such projects have major challenges to software quality
– Complex, hastily-written code
– Incomplete testing
– Inadequate documentation
– Little or no software process
– A culture that says, “Why should

we do all this fancy process stuff?
We’re getting along fine without it!”

Los Alamos National Laboratory 2018-01-17 | 4

What do you mean by “getting along fine”?

• Historically, it has usually meant that the code:
– Has the capabilities the users want
– And has them ASAP

• This approach can be successful in the short term. . .
– Can build up a user base
– Can meet deliverables, produce papers, get grants renewed, etc.

• . . . but it has problems that show up in the longer term
– Code is written hastily, hard to understand
– Design is ad-hoc
– Difficult for code team to maintain, extend
– Difficult for new team members to learn
– Difficult to optimize for new architectures

• In other words, it’s not sustainable

Los Alamos National Laboratory 2018-01-17 | 5

What do you mean by “getting along fine”? (2)

• A modern, better definition would be that the code:
– Is understandable, maintainable
– Is extensible
– Is well-tested
– Is well-documented
– Is portable to modern architectures
– . . . And still has the capabilities the users want
– . . . And has them (reasonably) quickly

• This is more sustainable for the long term

Los Alamos National Laboratory 2018-01-17 | 6

Changing practices requires changing values
and culture

• A project decides what it values, and grows a culture that reflects
those values

• This affects many aspects of a code project:
– Languages, programming models, tools used (or not used)
– Staffing (how many developers? what background?)
– Training, career development
– Performance evaluations
– Tasking, scheduling, deliverables

• These all reinforce each other, push the project in a certain
direction

• It’s very hard to change that direction without (at least partly)
changing values and culture

Los Alamos National Laboratory 2018-01-17 | 7

Changing practices can require changing code

• Sometimes best practices and modern tools have built-in
assumptions that older codes don’t satisfy:
– Unit testing assumes self-contained units
– Shared ownership of code assumes understandable code that any

developer can reason about
– And so on. . .

• Result: changing practices may have to go hand-in-hand with
changing code
– This may make starting the process harder
– But once it does start, it can become a “virtuous cycle”

So what does it look like to put all this into practice?

Los Alamos National Laboratory 2018-01-17 | 8

Case study: The LANL xRage code

• xRage is an Eulerian AMR
radiation-hydrodynamics code

• Original code written ∼1990
• Has been used successfully in

several application areas
• Contains about 470K lines of

source code
– Not counting numerous

third-party libraries, from LANL
and elsewhere

• Mostly Fortran 90, some C/C++
• MPI-only parallelism

xRage applications:
asteroid impact simulations,
shape charge experiments,
Inertial Confinement Fusion

simulations

Los Alamos National Laboratory 2018-01-17 | 9

The need for modernizing xRage

20+ years of high-pressure work left xRage with significant
technical debt. This made it difficult to:
• understand the code flow or data flow
• maintain the code
• add new features
• train new developers as older staff retire
• refactor for advanced architectures, such as Trinity, Sierra, . . .

These factors (especially the
last two) made us realize that
things needed to change!

Los Alamos National Laboratory 2018-01-17 | 10

Prerequisite #1:
Management support for culture change

Management saw the need for doing things differently, was willing to
make changes:
• Added a CS co-lead to the project
• Shifted project resources to support more CS/SE staff
• Allocated part of domain scientists’ time to modernization work
• Scaled back development of new physics features, milestone

commitments

Los Alamos National Laboratory 2018-01-17 | 11

Prerequisite #2: Regression test suite

• Before: We had a regression
test suite, but it wasn’t
well-maintained

• As refactoring started: team
committed to keeping tests
passing (“wall of green”)

• At first, all tests were
integrated tests
– Unit tests were added later

• Nightly, weekly test runs are
automated, results emailed to
team

• Tests serve as a safety net as
we refactor

Los Alamos National Laboratory 2018-01-17 | 12

What to tackle first?

Several possible tasks:
• Move to modern build system (e.g.

CMake)?
• Implement unit testing?
• Clean up our tangled dependency

structure?

We decided to do cleanup first
• Cleaner code has immediate benefit
• Can’t do unit tests on a hairball code
• Could use CMake on a hairball

code, but that’s not what CMake is
designed for

xRage dependency
graph, 2014-10-01

(the “hairball” graph)

Los Alamos National Laboratory 2018-01-17 | 13

Untangling dependencies
• Any file could use data, call routines from any other file
• Our strategy to change this:

– Change existing code base in place
– Separate code into packages of related functionality with

well-defined interfaces
– Move toward a cleaner, simpler design

• Some techniques:
– Create derived types for package state, pass through argument lists
– Find misplaced code and move it to a proper place
– Lift some function calls (e.g., coupling) to higher-level packages
– Deprecate/remove unneeded calls

Los Alamos National Laboratory 2018-01-17 | 14

Untangling dependencies (2)

After about 15 months of work, this
process led to a much simpler graph
(right)
• Graph is levelized, has no cycles!
• Interfaces between packages are

better-defined
• This makes it easier to understand,

reason about the code
• This enables other changes on a

per-package basis
– Unit testing, documentation
– Code cleanup
– Performance optimization
– Physics improvements xRage dependency graph,

2016-01-11
Los Alamos National Laboratory 2018-01-17 | 15

Where we are now

Task list:
• Levelize dependency graph (complete)
• Refactor build system to use libraries, enforce levelization

(complete)
• Add unit tests (infrastructure complete, test writing ongoing)
• Document packages (ongoing)
• Clean up code within packages (ongoing)
• Work on performance optimization (ongoing)
• Move from home-grown build system to CMake (prototyped)
• Move from SVN version control to Git/Gitlab (planning)
• Set up Gitlab-CI continuous integration (planning)

Los Alamos National Laboratory 2018-01-17 | 16

Some recommendations to other projects

• Get management support for culture change - this is crucial!
• Use regression tests as a safety net as you refactor
• Resist the temptation to move to a shiny new tool just because

it’s shiny and new
– Prioritize tasks/changes by value added to the project

• Find the right balance between code/process improvement and
user support
– Both are important!

Los Alamos National Laboratory 2018-01-17 | 17

Resources

General resources:
• Lakos, Large-Scale C++ Software Design (1996)

– Specific mechanisms are now outdated, but...
– General principles still apply to all languages, not just C++

• Feathers, Working Effectively with Legacy Code

More details on xRage refactoring:
• Ferenbaugh et al., Modernizing a Long-Lived Production Physics

Code, SC16 poster
http://sc16.supercomputing.org/sc-archive/tech_poster/
tech_poster_pages/post196.html

Los Alamos National Laboratory 2018-01-17 | 18

http://sc16.supercomputing.org/sc-archive/tech_poster/tech_poster_pages/post196.html
http://sc16.supercomputing.org/sc-archive/tech_poster/tech_poster_pages/post196.html

Resources (2)

Tools we’ve found useful for xRage:
• Understand static visual analysis tool

http://scitools.com

• Graphviz graph visualization for dependency graphs
http://graphviz.org

• pFUnit unit test framework for Fortran
http://pfunit.sourceforge.net

• Google Test unit test framework for C/C++
https://github.com/google/googletest

Los Alamos National Laboratory 2018-01-17 | 19

http://scitools.com
http://graphviz.org
http://pfunit.sourceforge.net
https://github.com/google/googletest

Questions?

Thanks for your attention!

Charles Ferenbaugh
cferenba@lanl.gov

Los Alamos National Laboratory 2018-01-17 | 20

